6.7.9 MapMatrixValueOverwrite

6.7.9.1 Outline of the node

Overwrite a specified submatrix of a Matrix<ObjectRef> with a specified value where the Matrix<ObjectRef> is an ObjectRef of a Map<int, ObjectRef> .

6.7.9.2 Necessary file

No files are required.

6.7.9.3 Usage

When to use

This node is used to overwrite a specified submatrix of a Matrix<ObjectRef> with a specified value where the Matrix<ObjectRef> is an ObjectRef of a Map<int, ObjectRef> . The data type of the specified value will be converted to the suitable one depending on the ObjectRef of the Map$<$int , Matrix<ObjectRef> $>$ given as the input.

6.7.9.4 Input-output and property of the node

Input

INPUT

: Map$<$int , Matrix<ObjectRef> $>$ type; Map$<$int , Matrix<int> $>$, Map$<$int , Matrix<float> $>$, or Map$<$int , Matrix<complex<float> > $>$.

Output

OUTPUT

: Map$<$int , Matrix<ObjectRef> $>$ type; Map$<$int , Matrix<int> $>$, Map$<$int , Matrix<float> $>$, or Map$<$int , Matrix<complex<float> > $>$.

Parameter

Table 6.96: Parameter list of MapMatrixValueOverwrite 

Parameter name

Type

Default value

Unit

Description

OVERWRITTEN_ROW_MIN

int 

0

 

The row index of the Matrix given as the input to specify the first row of the submatrix on which overwrite.

OVERWRITTEN_ROW_MAX

int 

0

 

The row index of the Matrix given as the input to specify the last row of the submatrix on which overwrite.

OVERWRITTEN_COL_MIN

int 

0

 

The column index of the Matrix given as the input to specify the first column of the submatrix on which overwrite.

OVERWRITTEN_COL_MAX

int 

0

 

The column index of the Matrix given as the input to specify the last column of the submatrix on which overwrite.

OVERWRITE_VALUE_REAL

float 

0

 

The value with which overwrite a specified submatrix. The data type will be converted to the suitable one depending on the ObjectRef of the Map$<$int , Matrix<ObjectRef> $>$ given as the input.

OVERWRITE_VALUE_IMAG

float 

0

 

The value for the imaginary part with which overwrite a specified submatrix when the ObjectRef of the Map$<$int , Matrix<ObjectRef> $>$ given as the input is the complex type.

DEBUG

bool 

false

 

Enable or disable to output the overwriting status to standard output.

OVERWRITTEN_ROW_MIN

: int  type. The row index of the Matrix<ObjectRef> of the Map$<$int , Matrix<ObjectRef> $>$ given as the input to specify the first row of the submatrix on which overwrite. The default value is 0.

OVERWRITTEN_ROW_MAX

: int  type. The row index of the Matrix<ObjectRef> of the Map$<$int , Matrix<ObjectRef> $>$ given as the input to specify the last row of the submatrix on which overwrite. The default value is 0.

OVERWRITTEN_COL_MIN

: int  type. The column index of the Matrix<ObjectRef> of the Map$<$int , Matrix<ObjectRef> $>$ given as the input to specify the firtst column of the submatrix on which overwrite. The default value is 0.

OVERWRITTEN_COL_MAX

: int  type. The column index of the Matrix<ObjectRef> of the Map$<$int , Matrix<ObjectRef> $>$ given as the input to specify the last column of the submatrix on which overwrite. The default value is 0.

OVERWRITE_VALUE_REAL

: float  type. The value with which overwrite a specified submatrix. When the INPUT is Map$<$int , Matrix<int> $>$, the type will be converted to the int type. When the INPUT is Map$<$int , Matrix<complex<float> > $>$, the value will be for the real part. The default value is 0.

OVERWRITE_VALUE_IMAG

: float  type. The value for the imaginary part with which overwrite a specified submatrix when the ObjectRef of the Map$<$int , Matrix<ObjectRef> $>$ given as the input is the complex type. The default value is 0.

DEBUG

: bool  type. Setting the value to true outputs the overwrite status to the standard output. The default value is false.

6.7.9.5 Details of the node

$<$example$>$

PARAMETER:

  \[ \begin{tabular}{l} OVERWRITTEN\_ ROW\_ MIN:0, \\ OVERWRITTEN\_ ROW\_ MAX:0, \\ OVERWRITTEN\_ COL\_ MIN:1, \\ OVERWRITTEN\_ COL\_ MAX:2, \\ OVERWRITE\_ VALUE\_ REAL:9 \end{tabular} \]    

INPUT:

  \[ \begin{array}{ccc} \left\{ \begin{array}{cc} 0, & \left[ \begin{array}{ccc} 1 & 2 & 3\\ 4 & 5 & 6 \end{array} \right] \end{array} \right\} , & \left\{ \begin{array}{cc} 1, & \left[ \begin{array}{ccc} 2 & 3 & 4\\ 5 & 6 & 7 \end{array} \right] \end{array} \right\} , & \left\{ \begin{array}{cc} 2, & \left[ \begin{array}{ccc} 3 & 4 & 5\\ 6 & 7 & 8 \end{array} \right] \end{array} \right\} \end{array} \]    

OUTPUT:

  \[ \begin{array}{ccc} \left\{ \begin{array}{cc} 0, & \left[ \begin{array}{ccc} 1 & 9 & 9\\ 4 & 5 & 6 \end{array} \right] \end{array} \right\} , & \left\{ \begin{array}{cc} 1, & \left[ \begin{array}{ccc} 2 & 9 & 9\\ 5 & 6 & 7 \end{array} \right] \end{array} \right\} , & \left\{ \begin{array}{cc} 2, & \left[ \begin{array}{ccc} 3 & 9 & 9\\ 6 & 7 & 8 \end{array} \right] \end{array} \right\} \end{array} \]