Linear algebra (numpy.linalg)¶
Matrix and vector products¶
Decompositions¶
Matrix eigenvalues¶
Norms and other numbers¶
Solving equations and inverting matrices¶
Exceptions¶
Linear algebra on several matrices at once¶
Several of the linear algebra routines listed above are able to compute results for several matrices at once, if they are stacked into the same array.
This is indicated in the documentation via input parameter specifications such as a : (..., M, M) array_like. This means that if for instance given an input array a.shape == (N, M, M), it is interpreted as a “stack” of N matrices, each of size M-by-M. Similar specification applies to return values, for instance the determinant has det : (...) and will in this case return an array of shape det(a).shape == (N,). This generalizes to linear algebra operations on higher-dimensional arrays: the last 1 or 2 dimensions of a multidimensional array are interpreted as vectors or matrices, as appropriate for each operation.