HARK designer 0.5.0 ドキュメント

Constants of the numpy.ma module

コンテンツ

Constants of the numpy.ma module

In addition to the MaskedArray class, the numpy.ma module defines several constants.

numpy.ma.masked

The masked constant is a special case of MaskedArray, with a float datatype and a null shape. It is used to test whether a specific entry of a masked array is masked, or to mask one or several entries of a masked array:

>>> x = ma.array([1, 2, 3], mask=[0, 1, 0])
>>> x[1] is ma.masked
True
>>> x[-1] = ma.masked
>>> x
masked_array(data = [1 -- --],
             mask = [False  True  True],
       fill_value = 999999)
numpy.ma.nomask

Value indicating that a masked array has no invalid entry. nomask is used internally to speed up computations when the mask is not needed.

numpy.ma.masked_print_options

String used in lieu of missing data when a masked array is printed. By default, this string is '--'.

The MaskedArray class

class numpy.ma.MaskedArray
A subclass of ndarray designed to manipulate numerical arrays with missing data.

An instance of MaskedArray can be thought as the combination of several elements:

Attributes and properties of masked arrays

MaskedArray.data

Returns the underlying data, as a view of the masked array. If the underlying data is a subclass of numpy.ndarray, it is returned as such.

>>> x = ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
>>> x.data
matrix([[1, 2],
        [3, 4]])

The type of the data can be accessed through the baseclass attribute.

MaskedArray.mask

Returns the underlying mask, as an array with the same shape and structure as the data, but where all fields are atomically booleans. A value of True indicates an invalid entry.

MaskedArray.recordmask

Returns the mask of the array if it has no named fields. For structured arrays, returns a ndarray of booleans where entries are True if all the fields are masked, False otherwise:

>>> x = ma.array([(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)],
...         mask=[(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)],
...        dtype=[('a', int), ('b', int)])
>>> x.recordmask
array([False, False,  True, False, False], dtype=bool)
MaskedArray.fill_value

Returns the value used to fill the invalid entries of a masked array. The value is either a scalar (if the masked array has no named fields), or a 0-D ndarray with the same dtype as the masked array if it has named fields.

The default filling value depends on the datatype of the array:

datatype default
bool True
int 999999
float 1.e20
complex 1.e20+0j
object ‘?’
string ‘N/A’
MaskedArray.baseclass

Returns the class of the underlying data.

>>> x =  ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 0], [1, 0]])
>>> x.baseclass
<class 'numpy.matrixlib.defmatrix.matrix'>
MaskedArray.sharedmask

Returns whether the mask of the array is shared between several masked arrays. If this is the case, any modification to the mask of one array will be propagated to the others.

MaskedArray.hardmask

Returns whether the mask is hard (True) or soft (False). When the mask is hard, masked entries cannot be unmasked.

As MaskedArray is a subclass of ndarray, a masked array also inherits all the attributes and properties of a ndarray instance.

MaskedArray methods

参考

Array methods

Conversion

Shape manipulation

For reshape, resize, and transpose, the single tuple argument may be replaced with n integers which will be interpreted as an n-tuple.

Item selection and manipulation

For array methods that take an axis keyword, it defaults to None. If axis is None, then the array is treated as a 1-D array. Any other value for axis represents the dimension along which the operation should proceed.

Pickling and copy

Calculations

Arithmetic and comparison operations

Comparison operators:

Truth value of an array (bool()):

Arithmetic:

Arithmetic, in-place:

Representation

Special methods

For standard library functions:

Basic customization:

Container customization: (see Indexing)

Specific methods

Handling the mask

The following methods can be used to access information about the mask or to manipulate the mask.

Handling the fill_value

Counting the missing elements

コンテンツ